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Abstract— Today’s computers compute with numbers and
memory pointers that hardly ever exceed 64 bits. With nan-
otechnology we will soon be able to build computers with
10,000-bit words. How would such a computer work and
what would it be good for? The paper describes a 10,000-
bit architecture that resembles von Neumann’s. It has a
random-access memory (RAM) for 10,000-bit words, and an
arithmetic–logic unit (ALU) for “adding” and “multiplying”
10,000-bit words, in abstract algebra sense. Sets, sequences,
lists, and other data structures are encoded “holographically”
from their elements using addition and multiplication, and
they end up as vectors of the same 10,000-dimensional space,
which makes recursive composition possible. The theory of
computing with high-dimensional vectors (e.g. with 10,000-bit
words) has grown out of attempts to understand the brain’s
powers of perception and learning in computing terms and
is based on the geometry and algebra of high-dimensional
spaces, dynamical systems, and the statistical law of large
numbers. The architecture is suited for statistical learning from
data and is used in cognitive modeling and natural-language
processing where it is referred to by names such as Holographic
Reduce Representation, Vector Symbolic Architecture, Random
Indexing, Semantic Indexing, Semantic Pointer Architecture,
and Hyperdimensional Computing.

I. INTRODUCTION

The conventional von Neumann computer architecture has
been phenomenally successful and affects nearly all aspects
of our lives. The idea in itself is powerful but its success is
equally due to phenomenal advances in semiconductors—it
would not have happened with vacuum tubes—and to the
development of programming languages. However, comput-
ing today is easily traced back to computing in the vacuum-
tube era. We compute with numbers and pointers that sel-
dom exceed 64 bits, and store them in a random-access
memory, which also stores the program code. When we
need something beyond numbers, such as vectors, matrices,
trees, lists, general data structures, and the program code,
we make them from numbers and memory pointers. The
computer’s circuits are designed to work with these numbers
and pointers and to run the program code. In terms of
computing fundamentals, very little has changed in over half
a century, and programming languages from over 50 years
ago are still used today.

With nanotechnology we are entering an era that can
equal in significance the advent of the transistor. It is due to
the possibility of building ever larger circuits that consume
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minuscule power compared to present-day semiconductor
circuits. The technology will no doubt benefit conventional
computing, for example in the form of very large nonvolatile
memories, but it will also make possible new computing
architectures that require very large circuits. The true signifi-
cance of nanotechnology is likely to be realized through these
architectures. Here we describe one such, the possibility of
computing with high-dimensional vectors, or “hyperdimen-
sional” to stress the truly high dimensionality that is at its
core.

Ideas for high-dimensional computing have grown out
of attempts to understand nervous systems and brains in
computing terms, fostered in cognitive-science and artificial-
neural-networks research. The vectors can be binary or
real or complex so long as their dimensionality is in the
thousands. The idea is explained conveniently with reference
to computing with 10,000-bit words. It differs from conven-
tional computing mainly by having “arithmetic” operations
and memory for 10,000-bit words. The paper will show how
to compute with them, what the underlying mathematics is,
and what the potential benefits are vis-a-vis conventional
computing.

II. ARTIFICIAL INTELLIGENCE AS THE BACKDROP

Computers were invented for calculating with numbers.
Yet the idea that the brain is a kind of computer and
that computers could be intelligent is as old as the stored-
program computer (McCulloch & Pitts 1943; Turing 1950;
McCarthy et al. 1955; von Neumann 1958; Rosenblatt 1958;
Feigenbaum & Feldman 1963), and Artificial Intelligence
or Machine Intelligence became a part of computer sci-
ence taught in colleges and universities. The traditional AI
approach is symbolic, based on explicit rules and logical
reasoning and realized in programming languages such as
Lisp. Lisp is a prime example of computing with pointers,
which are addresses to memory (they are also numbers).
A single pointer of no more than 32 bits can represent
arbitrarily large and complex data that is encoded with
further pointers and numbers held in the computer’s memory.
A 10,000-bit word can similarly be thought of as a memory
pointer, but it is more than a traditional pointer, as we will
see below. AI has been successful in areas where the rules
and logic can be clearly defined, as in expert systems of
many kinds.

Artificial Neural Nets represent the second major approach
to artificial intelligence—neural nets are also referred to by
“Parallel Distributed Processing” (Rumelhart & McClelland
1986) and “Connectionism.” Learning is statistical, from
data, and is captured in the coefficients or connection weights



of large matrices. Early models dealt with associative mem-
ory (e.g., Kohonen 1977; Hinton & Anderson 1981; Hopfield
1982; Kanerva 1988) and pattern classification (e.g., Cortes
& Vapnik 1995), and the most actively researched area
today is deep learning (Schmidhuber 2014). While neural
nets are good for learning from data, they are poor for
logical reasoning and manipulating structured information,
which are the forte of traditional symbolic AI. The two
are complementary, but neither one alone is sufficient for
producing the artificial intelligence that the early pioneers
envisaged.

High-dimensional computing is an attempt at combining
the strengths of the two. Hinton (1990) introduced the idea
of a reduced representation, as a prerequisite for dealing with
compositional structure (i.e., with lists, trees, etc.—the staple
of symbol processing), and Smolensky (1990) described the
tensor-produce binding as a means to associate variables
with values when distributed representation is used. Plate
(1991, 2003) combined the ideas in Holographic Reduced
Representation (HRR) by reducing the tensor product with
circular convolution, thus yielding a model of computing
with fixed-width vectors. Computing with 10,000-bit words
is a special case, namely, when the vector dimensions are
binary (in Plate’s HRR they are real or complex). Binary
representation is the simples for explaining the idea.

III. COMPUTING WITH 10,000-BIT WORDS
VS. 64-BIT WORDS

10,000-bit computing is essentially similar to conventional
computing, so it is important to understand why the dif-
ferences would make a difference. In purely abstract terms
a 10,000-bit computer is no more powerful than a 64-bit
computer, or the Universal Turing Machine for that matter.
The question is, what can be computed efficiently?

A. Memory

A random-access memory (RAM) is an essential part a
computer. It is an array of registers that are referred to and
addressed by their position in the array. An address can refer
to an 8-bit byte or to a wider (16–64-bit) word. A megabyte
of memory means 8 million bits of storage. To address a
million bytes we need 20 bits, to address a billion bytes
we need 30 bits. It is rather obvious that a 64-bit word can
address more memory than a computer would ever have.

The memory for the 10,000-bit computer stores 10,000-
bit words. Moreover, it is addressed by 10,000-bit words,
defying the notion that there be a register—a physical mem-
ory location—for each possible address. However, it matters
only that there be enough physical memory for the storage
needs of a system’s lifetime, and that the information be
available “directly” in RAM-like fashion rather than serially
as on a tape. A high-dimensional RAM could have millions
of locations, with each location capable of storing 10,000
bits or small integers.

Memories of that kind have been studied as neural nets
and are called associative or content-addressable (Baum,
Moody & Wilczek 1988; Kanerva 1988; Stewart, Tang &

Eliasmith 2011). Addressing the memory with a 10,000-bit
word selects multiple locations, although but a tiny fraction
of all the locations there are (addressing an ordinary RAM
selects exactly one lactation). A word is stored in memory
by adding it into the selected locations and is retrieved by
averaging over the contents of the selected locations.

This kind of memory has three important properties: (1)
it allows random access to an address space that is much
larger than the physical memory, (2) addressing can be ap-
proximate, and (3) it affords recognition. The data retrieved
from memory includes an estimate of its reliability—whether
the exact or a similar address has previously been used for
storing data. The memory can be used for finding the best
match to a retrieval cue in the set of stored patterns.

B. Arithmetic

When we think of computing, we naturally think of the
addition and multiplication of numbers. They are used to cal-
culate values of functions from the values of their arguments,
which was the root purpose of computers. They are also used
to calculate addresses to memory when data are stored in
and retrieved from composite structures such as vectors and
matrices; in other words, addition and multiplication are used
to make pointers.

Addition and multiplication so dominate computing that
we build specialized circuits for them. The size of the
circuit—its width in bits—is built to match the computer’s
word size, 32 and 64-bit architectures being common today.
By analogy, the 10,000-bit architecture needs operations for
10,000-bit words, such as addition and multiplication but
taken in a more general, algebraic, sense (note: we are not
talking about addition and multiplication of numbers with
10,000-bit precision). References to addition and multiplica-
tion below are in this more general sense.

The rules of arithmetic with numbers are a consequence
of addition and multiplication forming an algebraic field.
The operations on 10,000-bit words (on high-dimensional
vectors at large) can likewise be used for computing when
they form a field over the vector space, or approximate a
field. At least the following should be approximately true:
(1) addition is commutative, (2) multiplication is invertible,
(3) multiplication distributes over addition, and (4) vectors
can be compared for similarity (the space has a metric).
A representational system that satisfies such criteria can
serve as the basis of computing whether its elements be
numbers or vectors or mathematical objects of some other
kind. Here we use binary vectors to demonstrate addition and
multiplication and to discuss further properties of the space
and its operations.

1) Distance: Hamming distance is a natural way to com-
pare binary vectors for similarity. In 10,000 dimensions
nearly all vectors are dissimilar to, or approximately 5,000
bits away from, any given one: only a billionth of the space—
of all 10,000-bit vectors—is within 4,700 bits away (and a
billionth further than 5,300 bits away). A randomly drawn
vector is dissimilar—nearly orthogonal—to any already se-
lected vector with very high probability even if millions of



vectors have been selected already. These statistics follow
from the binomial distribution with n = 10,000 and p = 0.5
and its approximation by the normal. The mean is 5,000 and
the standard deviation is 50, and so most of the space is 100
standard deviations away from any given point. This is often
referred to as “concentration of measure.”

2) Addition: For addition of two or more binary vectors
we use componentwise majority rule: their arithmetic sum
vector is thresholded at half the number of vectors. Adding
an even number of binary vectors can produce ties that need
braking, to end up binary. Ties can be broken at random
or with a pseudorandom function of the argument vectors.
The sum vector can represent a set of its arguments and
it is similar—close in Hamming distance—to each of the
argument vectors. The similarity is strong for sums of fewer
than a dozen vectors and statistically significant for over a
thousand.

3) Multiplication: For multiplication we use componen-
twise Exclusive-Or (XOR, addition modulo 2, ∗). Contrary
to addition that produces vectors similar to its arguments,
multiplication produces dissimilar vectors—the product vec-
tor ends up “somewhere else” in the space. This makes
multiplication useful for variable binding, which is a key to
computing with structured data (with lists, trees, sequences,
etc.—things Lisp excels at). XOR is its own inverse and
it distributes over the thresholded sum; the distribution is
exact when the sum is of an odd number of binary vectors,
approximate when their number is even. Furthermore, XOR
preserves distance: the Hamming distance between A ∗ X
and A ∗ Y is exactly the same as between X and Y for any
binary vectors A, X , and Y . All these properties play a role
in encoding and decoding structure.

C. Representing Structured Data

The following example shows the encoding and decoding
of composite structure with addition and multiplication.
Consider a data record of three variables or “fields” x, y, z
with values a, b, c for representing ‘(x = a) and (y = b) and
(z = c)’. The values could be names or numbers or pointers
to further structure, for example. Traditional representation
reserves a separate memory location for each of the variables.
Their identity is implicit—it is hidden in the program code.

The corresponding 10,000-bit representation is depicted in
Figure1. The variables and values are represented by 10,000-
bit vectors X, Y, Z,A, B,C. They could be the result of
some previous processing or they could be chosen at random.
We will assume them to be random. The variable x is bound
to the value a with multiplication, thus X ∗ A represents
the fact that x = a. The other two fields are encoded
similarly with Y ∗B and Z∗C. Because binding is done with
multiplication, the three new vectors are dissimilar from any
of the six for the variables and the values, and also from each
other. Next the three are combined into a singe 10,000-bit
vector with addition, yielding

H = [(X ∗A) + (Y ∗B) + (Z ∗ C)]

 
 
 X  = 1 0 0 1 0 ... 0 1      X and A are bound with XOR 
 A  = 0 0 1 1 1 ... 1 1 
----------------------- 
X*A = 1 0 1 0 1 ... 1 0  ->  1 0 1 0 1 ... 1 0   (x = a) 
 
 Y  = 1 0 0 0 1 ... 1 0 
 B  = 1 1 1 1 1 ... 0 0 
----------------------- 
Y*B = 0 1 1 1 0 ... 1 0  ->  0 1 1 1 0 ... 1 0   (y = b) 
 
 Z  = 0 1 1 0 1 ... 0 1 
 C  = 1 0 0 0 1 ... 0 1 
----------------------- 
Z*C = 1 1 1 0 0 ... 0 0  ->  1 1 1 0 0 ... 0 0   (z = c) 
                             --------------------------- 
                      Sum =  2 2 3 1 1 ... 2 0 
   Sum thresholded at 3/2 =  1 1 1 0 0 ... 1 0  = H 
 
                        H =  1 1 1 0 0 ... 1 0 
       Inverse of X  =  X =  1 0 0 1 0 ... 0 1 
                             --------------------------- 
             Unbind:  X*H =  0 1 1 1 0 ... 1 1  = A' ≈ A 
                                    | 
                                    v 
                         .----------------------. 
                         |                      | 
                         | ITEM/CLEAN-UP MEMORY | 
                         |        finds         | 
                         |   nearest neighbor   | 
                         | among known vectors  | 
                         |                      | 
                         '----------------------' 
                                    | 
                                    v 
                             0 0 1 1 1 ... 1 1  = A 
 

Fig. 1. Encoding and decoding in distributed representation. ‘(x = a) and
(y = b) and (z = c)’ is encoded into the vector H , and the value of X
is extracted from H by “unbinding” followed by “clean-up.” X, Y, Z, A, B
and C are random 10,000-bit vectors chosen to represent x, y, z, a, b and
c, and ∗ is componentwise Exclusive-Or.

where the bracket around the sum denote thresholding. The
representation is called holographic or holistic because the
fields are superposed over each other—there are no spatially
identifiable fields.

Decoding makes use of inverse multiplication. From the
bound pair X ∗A we can find the vale of X by multiplying
with the inverse of X , which for XOR is X itself: X ∗ (X ∗
A) = (X ∗X)∗A = A (the two Xs cancel out). We can also
find the value of X in the composite vector H by multiplying
it with (the inverse of) X . This follows from the facts that a
thresholded sum is similar to each of its arguments and that
XOR preserves distance. Since H is similar to X ∗ A, X∗H
is (equally) similar to X ∗X ∗A, which equals A. Because
the vectors are high dimensional, the vector most similar to
X ∗ H among all the vectors stored in a system’s memory
is A with very high probability. It could be retrieved from a
content-addressable memory as the best match.

D. Permutation

Permutation of the coordinates is an extremely simple,
extremely useful operation and is an essential part of the
architecture (Gayler, 1998). It can be used for encoding
and decoding sequences, for example. A permutation can
be represented formally as a multiplication of a vector with
a matrix—the permutation matrix has exactly one 1 in each
row and in each column. Permutations in themselves embed
rich algebraic structure but since they are represented by
matrices they are not part of the field structure described



by the addition and multiplication of binary vectors, and
so we do not compute with them in the same sense. Of
cause it is possible to define systems of computing where
the basic elements are matrices, including permutations,
and the operations would be between matrices rather than
between vectors. Here we use specific permutations merely
as constant operators on vectors.

A permutation resembles multiplication (with XOR) in the
sense that it distributes over vector addition—it distributes
over any coordinatewise operation including multiplication
with XOR—it preserves distance, and it is invertible. How-
ever, it is not its own inverse: permutation of a permutation
is another, different permutation, which makes it suitable for
encoding sequences.

The circuit for a permutation and its inverse is very
simple: it is realized by wires that connect each coordinate
to some other coordinate in a one-to-one fashion. In a
10,000-bit architecture, that means 10,000 wires. A random
permutation is one where the one-to-one connections are
made at random. Much like with multiplication with XOR, a
randomly permuted vector is dissimilar to the original vector.

E. Representing Sequences

The representation of sequences involves encoding and
memory storage. A key idea in symbolic computing is that a
fixed-width vector—a single word—can represent a single
entity as well as one composed of many such, which is
accomplished with pointers. A sequence can then be encoded
with records or cells consisting of two variables, one for an
element of the sequence and the other for a pointer to the next
cell, which represents the rest of the sequence. The variables
are accessed by “car” and “cdr” in Lisp. It is possible to
define a 10,000-bit lisp on the same principle, by encoding
each cell holographically as described above and by choosing
vectors at random to serve as “pointers” to the next cell. It
is unclear, however, whether a lisp of that kind would have
any advantage over the Lisp we have now. Here it serves as
a point of reference for further discussion.

A sequence should be stored in such a way that it can
be found by a short subsequence taken from anywhere,
resembling how we can lock onto a familiar tune by hearing
any part of it. This can be done by having each element of
a sequence serve as the address for the next element, and
so the data serve also as the pointer. In this case, 10,000
bits of information would fetch the next 10,000 bits, and so
forth, in the manner of a linked list. This allows a sequence
to be found by any of its elements, but it breaks down
when different sequences contain the same or very similar
elements. The problem and a possible solution are discussed
at length in the book on sparse distributed memory (Kanerva
1988). The solution involves the addressing of memory with
several different delays, and the idea is that a more distant
past steers retrieval past points where sequences cross.

A more versatile representation of sequences uses permu-
tation. The idea is to add (i.e., superpose) to each element of
the sequence a permuted version of its history, and to store
the sum vector in memory with itself as the address—storing

in this way is called autoassociative. Encoding the sequence
of vectors (A,B, C, D, . . .) with Π as the permutation pro-
ceeds as follows:

S1 = A

S2 = ΠS1 + B = ΠA + B

S3 = ΠS2 + C = Π(ΠA + B) + C

S4 = ΠS3 + D = Π(Π(ΠA + B) + C) + D

Distributing the permutations over the sums in S4 gives

S4 = ΠΠΠA + ΠΠB + ΠC + D

= Π3A + Π2B + ΠC + D

which shows that the different permutations keep count of
how far back an element appears in the sequence. We can
also see, for example, that with S3 we can find the next
element D: by permuting S3 we get a vector that is similar
to S4, which allows us to retrieve S4 from memory, and
based on it find D; or possibly find D starting with ΠB +C
or with C alone. In other words, a sequence can be found
by a short subsequence (note: this is not true with sequences
encoded in Lisp; elements of the sequence do not provide
random access into the sequence).

Several comments are due regarding sequences encoded
with permutation. (1) Decoding relies on the sum being
similar and the product dissimilar to the argument vectors.
(2) When a 10,000-dimensional permutation Π is chosen
at random, it and its powers work reliably with very high
probability. They “randomize” their argument vector making
it dissimilar (nearly orthogonal) to the vectors recognized by
the system and thus act as random noise in a sum vector. (3)
We have overlooked normalization to binary in the example
above. When and how to normalize, whether and how to
weigh the history vector (S3 is the history vector of D in
the example), and whether and how to add elements from
the history into S without first permuting them can affect
the finding and following sequences and are ready topics for
experimentation.

IV. MINING FOR MEANING WITH RANDOM INDEXING

Random Indexing is a “big-data” algorithm that is ideally
suited for high-dimensional computing. It is based on random
projections (Johnson & Lindenstrauss 1984; Kaski 1998;
Papadimitriou et al. 1998; Kanerva, Kristoferson & Holst
2000; Sahlgren 2005) and is easily explained with reference
to language although it is applicable much more widely. In
general, it works well with sparse data, such as generated
in social networks where the number of individuals is large
and keeps changing but any one individual communicates
with only a few others. To drive this point home, how many
people are there in the world, and how many of them do
you know? Yet everyone is connected to everyone else via
but a few intermediaries in what is called a “small-world
network.” The 10,000-bit architecture and random indexing
are for dealing with situations like that.

The example from language consists of computing seman-
tic vectors for words. A semantic vector represents a word’s



meaning so that words with similar meaning (e.g., train and
bus) have similar vectors, and words with dissimilar meaning
(e.g., train and salami) have dissimilar vectors. The words of
a language are like a small-world network where most pairs
of words have dissimilar meaning but can be bridged by a
small number of similar-meaning words (e.g., train–engine–
fuel–food–salami). The similarity measure is based on vector
dot-product, and the cosine between vectors is often used.

Semantic vectors are made by reading millions of words
of ordinary English and by keeping count of which words
occur with which other words, and by encoding the statistics
into vectors: a semantic vector for a word combines into a
single vector all the contexts in which the word occurs and
is therefore also called a context vector. This idea has been
around a long time, there are different ways of collecting
and processing the statistics, and semantic vectors of one
kind or another are at the heart of search engines. Semantic
vectors are an important tool of computational linguistics and
natural-language processing.

Our example is of 10,000-dimensional semantic vectors
made with random indexing, but instead of binary we let the
vectors be of small integers. The text could be news article on
the Internet, for example, or Wikipedia pages. By vocabulary
we mean all the different words in the text—all unique ASCII
strings. We allow for the fact that the vocabulary keeps on
growing as more and more text is read, and so one part of the
program needs to maintain an up-to-date vocabulary, which
is a routine task for traditional programming.

Each word in the vocabulary is represented by two 10,000-
dimensional vectors, one constant and the other variable. The
constant vector is called the word’s index vector or label and
is chosen at random when the word is first encountered (or
it can be a pseudorandom function of the word in ASCII).
Sparse ternary labels have worked well: a small number of 1s
and the same number of −1s (e.g., 15 each) randomly placed
among all the 0s. The variable vector is the word’s semantic
vector. It starts out as the zero-vector and is updated every
time the word occurs in the text.

The text is read one (focus) word at a time, and a few
words before and after are its context window. The semantic
vector for the focus word is then updated by the random
labels of the context words. For example, if the text includes
the phrase “the quick BROWN FOX JUMPED over THE
LAZY DOG’S back” and the reading has progressed to the
word “over,” and if the context window is 3 + 3 words wide
(shown in capital letters), then the semantic vector for “over”
is updated by adding to it the random labels for “brown,”
“fox,” “jumped,” “the,” “lazy” and “dog’s.” In practice, words
are sometimes changed to their basic form and very frequent
words such as “the” are ignored.

Several facets of random indexing deserve pointing out:
1. Random indexing is incremental—no further processing

of the semantic vectors is necessary. This is in contrast to
semantic-vector algorithms that rely on principal components
of the frequency statistics (e.g., Latent Semantic Analysis
uses Singular-Value Decomposition).

2. The memory can be reduced further. Here we have fixed

the dimensionality of the semantic vectors (at 10,000) but
need a new such vector for every new word in the vocabulary.
A vocabulary of v words then requires a v×10,000 memory
matrix (in which one byte per matrix element is ample).
However, the growth of storage can be contained further
by random-indexing the memory matrix in both directions.
A million-word vocabulary can then be handled with a
10,000×10,000-byte matrix, and it could accommodate sev-
eral languages at once. If each random label has 30 non-
0s, accessing a word’s semantic vector would require the
accessing of 30 rows of the memory matrix.

3. Random labels that are sparse and ternary and have
an equal number of 1s and −1s are particularly convenient
because the expected value of every memory-matrix element
will be 0. The matrix elements can have a small dynamic
range without major information loss from overflow or
underflow.

4. The semantic vectors of the example above are made
with the addition operator alone. If also multiplication is
used, logical dependencies and structural information can be
included in the vectors. This was shown by Jones & Mewhort
(2007) by encoding word order with circular convolution,
which is a multiplication operator for vectors of reals, and by
Sahlgren, Holst & Kanerva (2008) by encoding word order
with permutation. Cohen et al. (2011, 2012; Widdows &
Cohen, in press) use both addition and multiplication to make
semantic vectors from medical abstracts for discovering de-
pendencies between drugs, genes, and diseases. These kinds
of vectors seem appropriate for encoding the information that
languages convey with grammar, which would be a landmark
in computational linguistics.

6. Random indexing is practical on today’s computers. A
software package for semantic vectors is freely available on
the Internet (Widdows & Cohen 2010).

V. WILL THE DIFFERENCE MAKE A DIFFERENCE?

We have seen so far that computing in 10,000 dimensions
has much in common with computing in one dimension—
i.e., with numbers—and of course the 10,000-dimensional
can be simulated to any desired precision by computing with
numbers. The question is of efficiency, of what is practical
under constraints on time, material, and energy. Conventional
computing puts a premium on high precision, reliability, and
speed and pays for it in energy, yet for a multitude of tasks
much of that is unnecessary. A prime example is the kind of
computing that brains are good at and that can be described
as qualitative rather than quantitative. The human mind
works with concepts, which we cannot really measure but
can relate to one another, and the mind arrives at the meaning
of things by relating them to some larger context. That kind
of computing can be accomplished with a sufficient number
of components that are neither fast nor precise, as attested
to by the number and variability of neurons in the brain.
Computing with 10,000-bit words tries to capture some of the
essence of such computing by exploiting new computational
concepts derived from high dimensionality (Kanerva 2009).
Below are two that have not yet been discussed.



A. 10,000-Bit Words as Memory Pointers

Traditional symbolic AI can be thought of as computing
with pointers, which are addresses to memory. Pointers allow
us to encode relations among objects and concepts, but a
pointer in itself has very little meaning. We can deduce that
two identical pointers have the same meanings, but pointers
that differ by only one bit usually lead to totally different
meanings. In practice, we hardly ever think of the pointers
as bit patterns.

The situation is very different in high dimensions. A
10,000-bit vector that encodes data, can also serve as an
address to memory, and so we are addressing the memory
with an amount of information that is roughly equivalent
to a page of text. Furthermore, if two such vectors are
similar, their meanings are similar and the parts of memory
they address will overlap. The idea is demonstrated in the
Semantic Pointer Architecture of Eliasmith et al. (2012; it
is explained in the Supplementary Materials). What kind of
programming is eventually possible with semantic pointers
remains to be seen. It is clear, however, that we are dealing
with a computational concept for which there is no counter-
part in traditional computing.

B. 10,000-Bit Words as Mappings

It is useful to view multiplication as a mapping in the vec-
tor space. When multiplication is used for variable binding,
as when X is bound to A in the example above (see Figure
1), the vector for the variable effectively maps the vector for
the value into a part space unrelated to the two. To recover
the value of X from the combined vector H , multiplying it
with the inverse of X maps H back into the neighborhood
of A.

Mapping-vectors can be learned from examples, giving
us a machine-learning algorithm for relational learning and
reasoning by analogy (Plate 2003; Kanerva 2000; Emruli
& Sandin 2014). In fact, holographic representation blurs
the distinction between the formal notion of a variable and
the informal idea of a prototype, allowing us to deal with
questions such as “what is the dollar of Mexico?” when
the literal answer is that no such thing exists. A vector that
maps Dollar to Peso can be computed from other pairs of
correspondences between the two countries (Kanerva 2010).
Vectors that are computed from examples and are used for
mapping by simple multiplication are another computational
concept for which there is no counterpart in traditional
computing.

VI. CONCLUSION

Computing in high dimensions is based on the rich—
and often subtle—geometry and algebra of high-dimensional
spaces (Widdows 2004). High dimensionality (10,000-D) is
more important than the nature of the dimensions, as addition
and multiplication operators of the right kind exist also for
real and complex vectors (Plate 2003). Underlying is the no-
tion that all things are represented in the same mathematical
space, subject to the same mathematical operations, capable
of being combined and composed with things of different

kinds, and serving different functions in different contexts,
as when Dollar in one instance is United States currency and
in another a “variable” that refers to the monetary unit of a
country. This hints of the flexibility with which we humans
use concepts and analogy in dealing with everything from
the mundane to the sublime (Hofstadter & Sander 2013).
Unified representation in high dimensions also allows new
algorithms to be developed for old problems such as graph-
matching (Levy & Gayler 2009).

Holographic/holistic representation makes high-dimen-
sional computing robust and brainlike. To build computers
like that in today’s technology may be impractical but it can
be made practical by nanotechnology, which is poised to
produce massive circuits that occupy very little space and
consume very little energy. However, nanocircuits are not
guaranteed to be flawless. For that, holographic representa-
tion can be the answer, because no individual component
or a small number of them is vital—information degrades
gradually with a growing number of failing components.

What would this kind of computer be good for? Many
properties of high-dimensional spaces are a good match to
human memory and to the mind’s dealing with concepts. We
might therefore expect that finding regularities and structure
in large heterogeneous data is a natural application. Extend-
ing semantic vectors to include grammar is an obvious target,
and language-understanding a long-term goal. If we have to
live with automated telephone robots, at least we should be
able to get reasonable answers to fully articulated questions!
High-dimensional representation and computing seem also
appropriate for the integration of signals from a multitude
of sensors, and so autonomous and semiautonomous robots
would be another application. A robot vehicle could train
here on earth and then be sent to explore the moons of Jupiter
and Saturn, for example.

How would the computer be programmed? It would be
an add-on to a regular computer, which would control it,
at least to start with because we know how to program
regular computers. New ways of programming the new
systems, or having them learn, will be discovered over time.
That would mimic our experience with the stored-program
computer. It replaced computing that was programmed by
plugging cords to patch panels that looked like old telephone
exchanges. The first stored programs were virtual cords in
virtual patch panels, expressed in numbers. That all changed
with the invention of symbolic programming, and we no
longer think of our programs as rat’s nests of patch cords.
Some development like that is quite possible as we become
familiar with the ways of high-dimensional computing. It
is worth noting that we can start now because many high-
dimensional algorithms can be used productively on today’s
computers, random indexing being one such.

Precise calculation will always be needed and we are not
going to replace what works now but will extend computing
to areas that are handled poorly if at all with today’s
computers. The extensions are likely into areas that artificial
intelligence has tried to master for decades but has lacked
the computing architecture for.
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